8(495)909-90-01
8(964)644-46-00
pro@sio.su
Главная
Системы видеонаблюдения
Охранная сигнализация
Пожарная сигнализация
Система пожаротушения
Система контроля удаленного доступа
Оповещение и эвакуация
Контроль периметра
Система домофонии
Парковочные системы
Проектирование слаботочных сетей
Аварийный
контроль
Раздел: Документация

0 1 2 3 4 ... 6

4.1.1. ФУНКЦИОНАЛЬНЫЕ СИСТЕМЫ ВИДЕОКАМЕР

Основу любой системы телевизионного наблюдения составляют телекамеры. На рынке систем теленаблюдения присутствует техника как ведущих фирм мира, так и тайваньских и корейских фирм.

В конструкции видеокамеры можно выделить следующие основные функциональные системы:

—преобразователь свет-сигнал;

—синхронизации;

—автоматической регулировки усиления;

—электронный затвор;

—автоматической установки баланса черного;

—гамма-коррекции;

—съемки при низких уровнях освещенности;

—объектив с автоматической диафрагмой.

Функция съемки при низких уровнях освещенности (LOLUX) замечательна тем, что позволяет снимать почти без освещения. При этом можно получить прекрасное изображение с хорошим цветовым балансом без увеличения уровня шума.

Преобразователи «свет-сигнал»

Важнейшим элементом конструкции видеокамеры является преобразователь «свет-сигнал», обеспечивающий кодирование снимаемого изображения в форме электрических сигналов.

Преобразователи свет-сигнал представляют собой либо передающие электронно-лучевые ТВ трубки (ЭЛТ), либо твердотельные матрицы — так называемые «приборы с зарядовой связью» (ПЗС).

Передающими ТВ трубками освнащены устаревшие модели видеокамер либо видеокамеры специального назначения.

В современных видеокамерах, как правило, применяются матрицы ПЗС, обеспечивающие большую надежность работы при достаточно высоких параметрах. Число строк матрицы принимает значения от 380 до 900.

Внедрению камер на ПЗС способствовали их несомненные преимущества. Отсутствие громоздких отклоняющих катушек и других, присущих ЭЛТ элементов конструкции, позволило в значительной степени снизить размеры и массу камер на ПЗС по сравнению со своими предшественниками.

Кроме того, заметно упростилась вся схемотехника ТВ камер и, как следствие, примерно наполовину снизилась потребляемая от источника питания мощность.

Одновременно примерно вдвое повысилась чувствительность ТВ камер. Их работа стала стабильнее, на нее перестали влиять типичные для камер на ЭЛТ сбои в работе, связанные с такими внешними факторами, как сотрясения, вибрации, уход параметров в процессе эксплуатации и при изменениях температуры.

Успех миниатюрных видеокамер обусловлен высокой надежностью и качеством преобразователей на приборах с зарядовой связью (ПЗС)

Для камер на ПЗС, в отличие от трубочных аналогов, характерно также отсутствие послеизображений (инерционности мишени), тянущихся продолжений за движущимися объектами в изображении, не говоря уже о прожигании фотопроводящего слоя мишени. Причем указанные параметры не зависят от срока эксплуатации матриц ПЗС.

В обычной ТВ камере электроннолучевая трубка в рабочем режиме удерживает на мишени значительное количество света. Это происходит, когда она направлена на сильно освещенные объекты (солнце, окно или осветительный прибор).

В случае использования твердотельной передающей камеры, все перечисленные факторы становятся совершенно несущественными, что особенно важно, если у оператора нет достаточного опыта или условий для проведения съемки.

В видеокамерах применяются 2/3", 1/2", 1/3", 1/4" и 1/6" приборы с зарядовой связью (ПЗС). Число пикселов (пиксел — один элемент ПЗС) в ПЗС может быть от 300 до 1000. Количество элементов матрицы обеспечивает горизонтальное разрешение изображения в зависимости от модели 300-600 телевизионных линий (твл).


Устройства синхронизации

Устройство синхронизации обеспечивает временное согласование работы всех систем и блоков камеры.

Синхронизация видеокамер может осуществляться от внутреннего или внешнего генератора. Внешняя синхронизация используется в многокамерных системах для получения немигающего переключения.

При совместном использовании камер с внутренней синхронизацией, они коммутируются устройствами, содержащими память на кадр.

Первые формирователи изображения на ПЗС использовали принцип покадрового переноса зарядов, который является самым простым, а поэтому наиболее удобным при производстве и эксплуатации матриц. Этот принцип был заложен в первую в мире вещательную ТВ камеру CCD-l производства фирмы RCA.

Чтобы не использовать механический затвор, был разработан принцип построчного переноса зарядов в ПЗС, в котором роль светочувствительных и накопительных датчиков играют (одинаковые) отдельные чередующиеся элементы.

Для повышения качества формируемого изображения в приборах с зарядовой связью был разработан альтернативный способ переноса зарядов. Его назвали принципом строчно-кадрового или гибридного — переноса. Такие приборы впервые были использованы в передающей ТВ камере фирмы Sony. Указанный принцип, как явствует из его названия, объединил в себе особенности двух предыдущих методов — построчного и покадрового переноса зарядов.

При работе с матрицами ПЗС с построчным переносом зарядов могут возникать искажения в виде тянущихся продолжений за объектами. Иначе их называют смазом или просто «тянучками». Они выглядят на изображении в виде вертикальных линий, тянущихся за ярко освещенными или блестящими объектами.

Однако, следует отметить, что возникают эти искажения при величине экспозиции, много превышающей нормальное значение.

В этих условиях камера с ЭЛТ уже испытывала бы мощное воздействие искажений в виде «хвоста кометы» и тянучек, типичных для передающих камер на ЭЛТ и крайне нежелательных в ряде критических ситуаций,

например, при перемещении камеры поворотным устройством.

В передающих ТВ камерах на ПЗС со строчно-кадровым переносом зарядов практически полностью отсутствует вертикальный смаз изображения.

Поэтому на сегодняшний день матрицы ПЗС с этим принципом переноса зарядов обеспечивают наилучшие качественные показатели формируемых изображений.

Третье поколение матриц ПЗС (Hyper HAD) включило в себя целый ряд новых электронных приемов, что значительно улучшило качественные показатели формируемого изображения.

Матрица Hyper HAD использует оригинальный и простой метод, заключающийся в установке миниатюрной прецизионной собирательной линзы точно на каждый светочувствительный элемент, что позволяет сконцентрировать световой поток без лишнего его рассеивания. В результате резко (примерно вдвое) возрастает чувствительность матрицы.

В табл. 4.1 приводится сравнительная характеристика чувствительности различных типов преобразователей свет-сигнал, ис-

пользуемых в ТВ камерах.

Таблица 4.1.

Характеристики преобразователей видеокамер

Тип формирователя изображения

Значение диафрагмы

Матрица Hyper HAD

F 8,0

Матрица HAD

F 5,6

Матрица на МОП конденсаторах

F 5,0

ЭЛТ типа плюмбикон 2/3"

F 4,5

ЭЛТ типа сатикон 2/3"

F 4,0

Указанные значения относительного отверстия соответствуют величине чувствительности в 2000 лк при коэффициенте отражения в 89,9%.

Эти улучшенные показатели позволяют работать не только в условиях низкой освещенности, при которых прежде видеосигнал имел бы неприемлемое качество, но и в процессе использования источников инфракрасного излучения.

Отметим, что вертикальный смаз при работе с ПЗС с построчным переносом типа Hyper HAD имеет такой же незначительный уровень, как и в матрицах с построчно-кадровым переносом зарядов.


Объектив камеры выбирается в соответствии с назначением камеры. Для максимального обзора выбирают широкоугольные объективы с фокусным расстоянием порядка 3,5 мм. При этом угол зрения камеры будет около 90°.

Длиннофокусные объективы с фокусным расстоянием 12 мм и углом зрения 30° используют при наблюдении периметра объекта. Для использования в условиях искусственного освещения необходима возможность отключения электронного затвора и автоматической регулировки усиления камеры (Приложение 1).

Объектив с переменным фокусным расстоянием

Для обеспечения эффекта увеличения изображения используются объективы с трансфокатором, специальные телекамеры с электронным трансфокатором, или цифровую аппаратуру увеличения/уменьшения изображения (видеопроцессоры).

Объективы видеокамер, имеющие переменное фокусное расстояние, называются «вари-объективы». Они позволяют осуществить плавное изменение масштаба изображения (совершать «наезд»). Масштаб изменяется вручную либо посредством электропривода. При этом сохраняется фокусировка изображения (см. табл. 4.3).

Таблица 4.2.

Характеристики объективов для ПЗ С-камер (Япония)

Модель

Фокусное

Угол обзора,

Светосила

Размер матрицы

Управление

расстояние, мм

град

объектива

ПЗС, мм

диафрагмой

Y1328NI

2,8

93

1,3

1/3"

отсутствует

Y1304NI

4,0

65

1,2

1/3"

отсутствует

Y1308NI

8,0

34

1,3

1/3"

отсутствует

Y1328M

2,8

93

1,3

1/3"

ручное

Y1304M

4,0

65

1,2

1/3"

ручное

Y1308M

8,0

34

1,3

1/3"

ручное

Y1235M

3,5

95

1,4

1/2"

ручное

Y1248M

4,8

70

1,4

1/2"

ручное

Y1206Mb

6,0

57

1,4

1/2"

ручное

Y1212Mb

12,0

30

1,4

1/2"

ручное

Y1328GS

2,8

93

1,3

1/3"

автоматическое

Y1304GS

4,0

65

1,2

1/3"

автоматическое

Y1380GS

8,0

34

1,3

1/3"

автоматическое

Y1235GS-CS

3,5

95

1,4

1/2"

автоматическое

Y1248GS-CS

4,8

70

1,4

1/2"

автоматическое

Y1206GS-CS

6,0

7

1,4

1/2"

автоматическое

Y1212GS-CS

12,0

30

1,4

1/2"

автоматическое

Примечание: тип резьбы для всех объективов — CS

Объективы видеокамер

Объективы к камерам отличаются величиной фокусного расстояния, светосилой, характером создаваемого оптического изображения. При съемке с одной и той же точки объективами с различными фокусными расстояниями масштаб изображения изменяется прямо пропорционально величине фокусного расстояния (см. табл. 4.2).

Если один и тот же объект наблюдать в одном масштабе с разных расстояний камерами с различными объективами, то будет заметна разница на изображении.

Изображения близко расположенных объектов при использовании короткофокусных объективов будут более контрастными и резкими, в сравнении с изображением удаленных объектов при использовании длиннофокусных объективов.

Короткофокусный объектив даже при небольшом диафрагмировании обладает большой глубиной резкости. Длиннофокусный объектив даже при съемке удаленных объектов имеет ограниченную глубину резкости.

При съемке геометрически строгих объектов даже незначительный наклон оптической оси объектива от горизонтального положения приводит к появлению в изображении нежелательных перспективных искажений. Это явление особенно заметно при использовании короткофокусных объективов.



0 1 2 3 4 ... 6