8(495)909-90-01
8(964)644-46-00
pro@sio.su
Главная
Системы видеонаблюдения
Охранная сигнализация
Пожарная сигнализация
Система пожаротушения
Система контроля удаленного доступа
Оповещение и эвакуация
Контроль периметра
Система домофонии
Парковочные системы
Проектирование слаботочных сетей
Аварийный
контроль
Раздел: Документация

0 1 2 3

РАСЧЕТ СТАЦИОНАРНЫХ МАГНИТНЫХ ПОЛЕЙ И ХАРАКТЕРИСТИК ЭЛЕКТРОТЕХНИЧЕСКИХ УСТРОЙСТВ С ПОМОЩЬЮ ПРОГРАММНОГО ПАКЕТА ANSYS

Е.Г. Андреева, д.т.н., доцент; С.П. Шамец, к.т.н., доцент; Д.В. Колмогоров, аспирант г. Омск, Омский государственный технический университет

1. Введение

Наличие компьютеров с большой ресурсной емкостью по объему памяти и быстродействию и новых программных средств расширяет возможности в постановке вычислительных задач, а также по улучшению учебно-методической базы для работы со студентами и аспирантами. Для решения разнообразных электротехнических задач, главным образом полевых, т.е. для исследования распределения магнитного поля (вектора магнитной индукции, вектора напряженности и магнитного векторного потенциала), а также основных электромагнитных характеристик (индуктивности и электромагнитной силы) электротехнических устройств и систем может использоваться программный пакет ANSYS.

В Омском государственном техническом университете для проведения лабораторных, практических и расчетных работ по курсу теоретические основы электротехники, часть третья «Электромагнитное поле» разработано учебное пособие «Конечно-элементный анализ стационарных магнитных полей с помощью программного пакета ANSYS». В пособии на примере электромагнитного двигателя (ЭМД) в приводе микрокомпрессора приведено решение плоскопараллельной магнитостатической задачи, осесимметричной магнитостатической задачи для линейной и нелинейной областей моделирования, трехмерной магнитостатической задачи. Рассмотрены все этапы решения задачи, начиная с ее постановки, затем: построение модели (препроцессирование), решение, анализ результатов (постпроцессирование). В приложениях приведены основные функции пакета для задания свойств магнитных материалов, разбиения модели конечными элементами (КЭ), описания типов КЭ для электромагнитного анализа, просмотра данных на этапах решения задачи, получения анимации.

Пакет ANSYS представляет собой совокупность программных кодов, построенных по методу конечных элементов (МКЭ) для решения большого круга инженерных задач. При помощи пакета ANSYS можно производить расчёты задач различной физической природы (прочность, распространение тепла, механика жидкостей и газов, электромагнетизм и т. д.). Пакет поставляется в различных конфигурациях, которые могут иметь ограничения как по характеру решаемых задач, так и по вычислительному потенциалу (ограничение на число конечных элементов, количество областей и т.д.). С помощью дружественного графического интерфейса пакета ANSYS осуществляется диалоговый (интерактивный) режим работы пользователя и компьютера. Данный интерфейс представляет собой


совокупность окон ввода/вывода и различных меню. Существует ещё и так называемый пакетный режим работы программы. В этом режиме все действия, начиная от построения модели до нахождения результатов решения и вывода их в текстовой или графической форме в файл, осуществляются автоматически по программе, написанной на языке APDL (ANSYS Parametric Design Language - язык параметрической разработки ANSYS). Этот режим хорош тем, что не требуется взаимодействие программы и человека. Таким образом, подготовленная задача может решаться, например, на удалённом компьютере, обладающем большой производительностью (суперкомпьютере), либо на кластере (несколько компьютеров, объединённых сетью). В любом режиме работы пакета создаваемое описание задачи записывается программой в файл базы данных задачи, который имеет расширение *.db. Результаты расчётов и промежуточные данные (матрицы системы линейных алгебраических уравнений (СЛАУ)) записываются в файлы с другими расширениями. Это следует помнить при резервировании результатов работы. Особенно это касается нелинейных задач, которые даже при большом числе конечных элементов требуют значительного времени для расчётов.

Работа с интерфейсом пакета ANSYS несколько отличается от работы с интерфейсом большинства других приложений под MS Windows и требует минимального навыка работы с ее графическим интерфейсом (с ее системой меню, окон, полос прокрутки, команд и т. д.).

Работа в пакете ANSYS, как и в любой программе по компьютерному инжинирингу, делится на три основных этапа: препроцессирование или подготовка модели, решение задачи моделирования и постпроцессирование или анализ результатов. В этап препроцессирования входит построение геометрии модели, разбивка области моделирования выбранным типом конечных элементов, задание свойств материалов. Перед решением электротехнической задачи моделирования задаются области с токовыми нагрузками (определяется плотность тока) и граничные условия. Постпроцессирование заключается в получении результатов расчётов: линий векторного магнитного потенциала (ВМП), вектора магнитной индукции, вектора напряженности магнитного поля и т.п., причем как для скалярных значений (модулей), так и для векторов. Все эти результаты можно вывести как в графическом виде, так и в виде таблицы распределения по узлам модели. Можно вычислить интегральные параметры, например индуктивность обмотки с током, интегральную электромагнитную силу, рассчитать магнитодвижущую силу.

Решение полевых задач в данном пакете производится на основе метода конечных элементов. Двумерные задачи магнитостатики решаются относительно z-составляющей магнитного векторного потенциала. Полученная в результате преобразований по МКЭ исходных дифференциальных уравнений поля система уравнений решается итерационным методом Ньютона-Рафсона. Объёмные модели рассчитываются на основе векторного либо скалярного магнитных потенциалов (это зависит от используемого для построения разбиения типа КЭ).


1. Постановка задач расчета электромагнитного поля электротехнического устройства

Математическим описанием непрерывных в пространстве и во времени процессов распределения тепла, электромагнитного поля, полей механических деформаций в технических объектах и системах являются дифференциальные уравнения в частных производных (уравнения математической физики). Различают стационарные (не меняющиеся во времени) и нестационарные (переменные, меняющиеся во времени) процессы. Стационарные процессы описываются эллиптическими уравнениями, а нестационарные - уравнениями параболического и гиперболического типов. Эти уравнения для электромагнитных полей относительно характеристик поля (векторов

напряженности электрического и магнитного полей E и H ; векторов электрической и

магнитной индукции D и B; векторного магнитного потенциала A, скалярного электрического потенциала ф) получают из преобразования уравнений Максвелла [1,2].

1.1. Стационарные задачи

Наиболее часто используемые эллиптические уравнения - это уравнения Лапласа и Пуассона, которыми в теории электромагнетизма описываются задачи электростатики и магнитостатики. Простейшим эллиптическим уравнением является уравнение Лапласа

Au =0,

где лапласиан (оператор Лапласа) A = V = V • V . Этот оператор может быть применен к скалярным и векторным функциям. В декартовой системе координат уравнение Лапласа имеет вид

„2 д2 ф д2 ф д2 ф д x д y д z

где ф (x, y, z) - скалярная функция.

В цилиндрической системе координат оно выглядит следующим образом:

V 2 ф =---(г—) + —----£- + —-тг = 0,

У R дRV дР/ R2 да2 дz2

где ф (R, а, z) [3].

К уравнениям эллиптического типа относится уравнение Пуассона, которое для линейных изотропных (1х = iy = iz = i = const) сред имеет вид:

V 2A = -ц J,

где A - векторный магнитный потенциал , J - вектор плотности тока, 1а = 110 -абсолютная магнитная проницаемость среды моделирования.



0 1 2 3
Рейтинг@Mail.ru