Раздел: Документация
0 ... 30 31 32 33 34 35 36 ... 40 Установка ударного датчика Датчик крепится с помощью ремешков, самоклеющихся прокладок или саморезов к деталям автомобиля жестко соединенным с кузовом. При недостаточной чувствительности может потребоваться смонтировать ударный датчик непосредственно на кузове автомобиля. Из-за того, что в момент монтажа бывает сложно определить оптимальную чувствительность, желательно устанавливать датчик так чтобы сохранялся доступ к регулятору чувствительности. Установка микроволнового сканера Сканер имеет зону обнаружения напоминающую купол. Поэтому, располагать его нужно приблизительно в центре салона, либо на полу в районе рычага стояночного тормоза, либо под потолком. Сканер недопустимо накрывать металлическими предметами. При установке сканера следует подключать его таким образом чтобы при выключении сигнализации с него снималось питание. Это связано с тем, что работающий сканер может создавать помехи работе антирадара. Установка ультразвукового сканера В комплект ультразвукового сканера обычно входят два одинаковых по виду капсюля присоединяемых с помощью проводников к блоку с электроникой. Расположение блока не имеет значения. Капсюли размещаются по правую и левую сторону салона у верхнего или нижнего основания лобового стекла. Их необходимо приблизительно ориентировать в направлении точки посередине заднего стекла. Оптимальная ориентация сильно зависит от конструкции салона, наличия подголовников сидений и при необходимости подбирается экспериментально. Установка датчиков требует творческого подхода для каждой конкретной модели автомобиля, так как требования к установке датчиков противоречивы Установка датчика разбития стекла Чувствительность датчика зависит от близости микрофона к стеклам и располагать его необходимо на равном расстоянии от всех стекол. ПРИЛОЖЕНИЯ Приложение 1. ОСВЕЩЕНИЕ ОБЪЕКТОВ ОХРАНЫ Свет - один из видов электромагнитного излучения, который вызывает зрительные ощущения. Электромагнитные колебания характеризуются двумя параметрами: длиной волны и энергией излучения. Длина волны измеряется в нанометрах (миллионных долях метра - нм). Видимый свет занимает узкий участок спектра, приблизительно от 380 до 760 нм. Участок спектра от 760 нм до 340 мкм называется инфракрасным светом, а от 10 до 380 нм - ультрафиолетовым. Различие в длине волны света воспринимается как различие по цветам. Зрительные ощущения различаются как в количественных соотношениях по яркости, так и качественно по цветности. Весь спектр, содержащий в определенном соотношении лучи всех длин волн от 380 до 760 нм, вызывает ощущение белого цвета. Примером белого цвета является естественный свет солнца или свет от обычных ламп накаливания. Такой свет называется сложным излучением. Свет, состоящий из колебаний только одной длины волны, называется простым, или монохроматическим излучением. На рис. П.1 приведены кривые относительного спектрального распределения энергии (спектра) света ламп накаливания (кривая 1) и солнечного света (кривая 2). Энергия при длине волны 560 нм принята за 100%. Для удобства сравнения различных тепловых излучателей используют число, указывающее цветовую температуру излучения. Понятие цветовой температуры распространяется только на такие излучения, спектр которых близок к тепловому (например, свет ламп накаливания) и выражается в градусах Кельвина. В табл. П.1 приведены 125 100 11 § § 1 i I i I £ 1 * t s J J Д Д * о о & 75 50 25 0 .у 400 450 500 550 600 650 700 Х,нм Рис. П.1. Спектральное распределение энергии источников света цветовые температуры различных источников излучения. Различные источники излучения излучают не одинаковый спектр. В зависимости от типа источника света различают непрерывный, смешанный и линейчатый спектры излучения. Непрерывный спектр излучают источники света, излучение которых определяется температурой их нагрева, например, лампы накаливания. Таблица П.1.
2 Например, в пасмурную погоду все объекты освещены рассеянным светом неба приблизительно одинаково и интервал яркостей у них сравнительно невелик. В ясную солнечную погоду объекты съемки освещены прямым солнечным светом и рассеянным светом неба. Детали в тенях объекта освещены только рассеянным светом неба. В данном случае интервал яркостей зависит не только от их отражательной способности, но и от контраста освещения. Контраст освещенности - отношение освещенности прямым солнечным светом вместе с рассеянным светом неба к освещенности только рассеянным светом. Общий интервал яркостей объекта в этом случае значительно возрастает. Свет, исходящий от объектов, зависит не только от спектрального состава освещающего света, но и от цвета самих объектов, их спектральной отражающей способности. Когда белый свет освещает объект, то одни из спектральных составляющих отражаются, а другие поглощаются. Отраженные лучи определяют не только яркость, но и цвет объекта при данном освещении. При использовании камер черно-белого изображения спектральная характеристика объекта не имеет существенного значения. При использовании цветных - цвет объекта становится фактором, определяющим интервал яркостей применительно к каждому из трех основных цветов. Таблица П.2.
Смешанный спектр имеет излучение газоразрядных источников света, например, люминесцентных ламп. Их излучение можно охарактеризовать величиной цветовой температуры только приближенно. Линейчатый спектр имеют газоразрядные натриевые лампы, ртутные лампы низкого давления, неоновые рекламные огни и т. д., к которым понятие цветовой температуры применить невозможно. Сравнивая ощущения, вызываемые в глазу излучением различных длин волн одинаковой интенсивности, обнаруживается, что глаз не одинаково чувствителен к лучам различных длин волн. Наибольшей чувствительностью глаз обладает к желто-зеленым лучам с длиной волны 560 нм. Чувствительные элементов телевизионных камер на ПЗС-матрицах выше в нижней части спектра, т. е. в «красной» области. Поверхности большинства объектов съемки отражают свет по-разному. Их яркость зависит от угла падения света и от угла наблюдения. Интервал яркости объекта съемки - отношение между яркостью самой темной и самой светлой деталями объекта съемки. При одинаковых условиях освещения объекты съемки и их детали видны потому, что они отличаются друг от друга по яркости. Разница в отражательной способности деталей в этих объектах определяет и их интервал яркостей. 0 ... 30 31 32 33 34 35 36 ... 40
|