Вы находитесь в разделе Типовых решений систем безопасности
Раннее обнаружение пожаровРазработчики современной противопожарной техники соревнуются в повышении чувствительности пожарных извещателей к основным признакам пожара: теплу, оптическому излучению от пламени и концентрации дыма. В этом направлении проводится огромная работа, но все пожарные извещатели срабатывают, когда хотя бы небольшой пожар уже возник. И мало кто обсуждает тему обнаружения возможных признаков пожара. но приборы, которые могут регистрировать не пожар, а лишь угрозу или вероятность появления пожара, уже разработаны. Это – газовые пожарные извещатели. аналитический анализ
На рис. 1 представлен график типичной реакции газового пожарного извещателя на пожар, начинающийся с горящей сигареты, упавшей на матрас. Из графика видно, что газовый извещатель реагирует на монооксид углерода через 60 мин. после попадания горящей сигареты на матрас, в этом же случае фотоэлектрический дымовой извещатель реагирует через 190 мин., ионизационный дымовой – через 210 мин., что значительно увеличивает время для принятия решения об эвакуации людей и ликвидации очага пожара. Если фиксировать комплекс параметров, который может привести к началу пожара, то можно (не дожидаясь появления пламени, дыма) изменить обстановку и избежать пожара (аварии). При раннем получении сигнала от газового пожарного извещателя обслуживающий персонал успеет предпринять меры к ослаблению или устранению фактора угрозы. Например, это может быть проветривание помещения от горючих паров и газов, при перегреве изоляции – выключение питания кабеля и переход на использование резервной линии, при коротком замыкании на электронной плате вычислительных и управляемых машин – тушение локального пожара и удаление неисправного блока. именно человек принимает окончательное решение: вызывать пожарную охрану или устранять аварию своими силами. Виды газовых извещателей Все газовые пожарные извещатели различаются по типу сенсора:
Металлооксидные сенсоры Изготавливаются металлооксидные сенсоры на основе толстопленочной микроэлектронной технологии. В качестве подложки используется поликристаллическая окись алюминия, на которую с двух сторон наносятся нагреватель и металлооксидный газочувствительный слой (рис. 2). Чувствительный элемент помещен в корпус, защищенный проницаемой для газа оболочкой, удовлетворяющей всем требованиям взрывопожаробезопасности. Металлооксидные сенсоры предназначены для определения концентраций горючих газов (метан, пропан, бутан, водород и т.д.) в воздухе в интервале концентраций от тысячных до единиц процентов и токсичных газов (СО, арсин, фосфин, сероводород и т.д.) на уровне предельно допустимых концентраций, и для одновременного и селективного определения концентраций кислорода и водорода в инертных газах, например в ракетной технике. Кроме того, они имеют рекордно низкую для своего класса электрическую мощность, необходимую для нагрева (менее 150 мВт), и могут применяться в сигнализаторах утечки газов и системах противопожарной сигнализации как стационарных, так и носимых. Термохимические газосигнализаторы Среди методов, применяемых для определения концентрации в атмосферном воздухе горючих газов или паров горючих жидкостей, используется термохимический метод. Его сущность заключается в измерении теплового эффекта (дополнительного повышения температуры) от реакции окисления горючих газов и паров на каталитически активном элементе датчика и дальнейшем преобразовании полученного сигнала. Датчик сигнализатора, используя этот тепловой эффект, формирует электрический сигнал, пропорциональный концентрации горючих газов и паров с различными коэффициентами пропорциональности для различных веществ. При горении различных газов и паров термохимический датчик выдает сигналы, разные по величине. Одинаковым уровням (в % НКПР) различных газов и паров в воздушных смесях соответствуют неравные выходные сигналы датчика. Термохимический датчик не избирателен. Его сигнал характеризует уровень взрывоопасности, определяемый суммарным содержанием горючих газов и паров в воздушной смеси. В случае контроля совокупности компонентов, в которой содержание отдельных, загодя известных горючих компонентов колеблется от нуля до какой-то концентрации может привести к погрешности контроля. Такая погрешность есть и при нормальных условиях. Этот фактор необходимо учитывать для задания границ диапазона сигнальных концентраций и допуском на их изменение – пределом допускаемой базовой абсолютной погрешности срабатывания. Пределы измерения сигнализатора – это наименьшее и наибольшее значение концентрации определяемого компонента, в рамках которых сигнализатор осуществляет измерение с погрешностью, не превышающей заданную. Описание измерительной схемы
При каталитическом горении воздушной смеси горючих газов и паров на чувствительном элементе В1 происходит выделение тепла, увеличение температуры и, следовательно, увеличение сопротивления чувствительного элемента. На компенсирующем элементе В2 горения не происходит. Сопротивление компенсирующего элемента изменяется при его старении, изменении тока питания, температуры, скорости движения контролируемой смеси и т.п. Эти же факторы действуют и на чувствительный элемент, что значительно уменьшает вызванный ими разбаланс моста (дрейф нуля) и погрешность контроля. При стабильном питании моста, стабильной температуре и скорости контролируемой смеси разбаланс моста со значительной степенью точности является результатом изменения сопротивления чувствительного элемента. В каждом канале устройство питания моста датчика обеспечивает регулированием тока постоянную оптимальную температуру элементов. В качестве датчика температуры, используется сам же чувствительный элемент В1. Сигнал разбаланса моста снимается с диагонали моста ab. Полупроводниковые газовые сенсоры Принцип действия полупроводниковых газовых сенсоров основан на изменении электропроводности полупроводникового газочувствительного слоя при химической адсорбции газов на его поверхности. Этот принцип позволяет эффективно использовать их в приборах пожарной сигнализации как альтернативные устройства традиционным оптическим, тепловым и дымовым сигнализаторам (извещателям), в том числе содержащим радиоактивный плутоний. А высокую чувствительность (для водорода от 0,00001% объемного), селективность, быстродействие и дешевизну полупроводниковых газовых сенсоров следует рассматривать как основное их преимущество перед другими типами пожарных извещателей. Используемые в них физико-химические принципы детектирования сигналов сочетаются с современными микроэлектронными технологиями, что обуславливает низкую стоимость продуктов при массовом производстве и высокие технические характеристики. Полупроводниковые газочувствительные сенсоры – это высокотехнологичные элементы с низким энергопотреблением (от 20 до 200 мВт), высокой чувствительностью и увеличенным быстродействием до долей секунд. Металлооксидные и термохимические сенсоры являются слишком дорогостоящими для такого использования. Внедрение в производство газовых пожарных извещателей на основе полупроводниковых химических сенсоров, изготавливаемых по групповой технологии, позволяет намного снизить стоимость газовых извещателей, что немаловажно для массового применения. Нормативные требования Нормативные документы на газовые пожарные извещатели так же не разработаны в полной мере. Имеющиеся ведомственные требования РД БТ 39-0147171-003-88 распространяются на объекты нефтяной и газовой промышленности. В НПБ 88-01 по размещению газовых пожарных извещателей сказано, что их следует устанавливать в помещениях на потолке, стенах и других строительных конструкциях зданий и сооружений в соответствии с инструкцией по эксплуатации и рекомендациями специализированных организаций. Однако в любом случае, для того чтобы точно рассчитать количество газовых извещателей и правильно произвести их установку на объекте, предварительно необходимо знать:
Резюме Газовые пожарные извещатели – это приборы следующего поколения, и поэтому они так же требуют от отечественных и зарубежных компаний, занимающихся противопожарными системами, новых научно-исследовательских изысканий по разработке теории газовыделения и распространения газов в помещениях разных по назначению и эксплуатации, и проведению практических экспериментов для разработки рекомендаций по рациональному размещению таких извещателей. Читайте далее: Вневедомственная охрана: новые функции и задачи Раннее обнаружение пожаров Перспективы интеграции систем автоматической пожарной защиты здания с использованием LON-протокола
|