Раздел: Документация
0 ... 9 10 11 12 13 14 15 ... 30 ютера, также как и в случае КЗ в нагрузке сильноточных каналов. Полный состав комбинированной защиты включает в себя: •схему контроля ширины управляющего импульса; •схему защитного отключения при КЗ в нагрузке слаботочных каналов; •схему защиты от выходного перенапряжения. Остановимся подробнее на механизмах защитного отключения и ограничения максимальной ширины управляющего импульса. Оба эти механизма заложены в архитектуру ИМС TL494 и являются базовыми при конструировании разных защитных схем. В классическом варианте построения комбинированной защиты возникновение КЗ в нагрузке слаботочных каналов сразу же ведет к защитному отключению. При возникновении КЗ в нагрузке сильноточных каналов сначала управляющая микросхема переходит в режим ограничения, и если КЗ продолжает развиваться, то происходит защитное отключение. Суть и смысл защитного отключения заключаются в том, чтобы силовые транзисторы инвертора переставали переключаться и оставались бы в закрытом состоянии неограниченно долго при возникновении аварийной ситуации, называемой коротким замыканием в нагрузке любого из выходных каналов ИБП. Для того чтобы оба силовых транзистора инвертора оказались закрыты одновременно, на их базах не должно быть управляющих импульсов. Тогда первичная обмотка силового импульсного трансформатора окажется отключенной от шины выпрямленного напряжения сети и, следовательно, через первичную обмотку и силовые транзисторы не будет протекать ток. Поэтому силовые транзисторы не будут подвержены опасности выжигания этим чрезмерно большим током при КЗ на вторичной стороне. Таким образом при исчезновении управляющих импульсов на базах силовых транзисторов желаемый защитный эффект будет достигнут. Источником (генератором) управляющих импульсов является микросхема TL494. Поэтому для осуществления защитного отключения необходимо заблокировать ее работу. Это можно сделать, если принудительно заставить любой из компараторов DA1, DA2 прекратить переключения и перейти в статическое состояние с постоянным высоким уровнем напряжения (логическая 1) на выходе. Тогда работа всего цифрового тракта микросхемы будет заблокирована. Оба выходных транзистора ее окажутся в статическом закрытом состоянии и управляющие импульсы на выводах 8 и 11 (либо 9 и 10) исчезнут, превратившись в статические потенциалы, которые не могут передаться на базы силовых транзисторов, т.к. связь с ними осуществляется через управляющий трансформатор DT. Для того чтобы прекратить переключения компаратора DA1 либо DA2, достаточно на его неинвертирующий вход (вывод 4 для компаратора, DA1 либо вывод 3 для компаратора DA2) подать статический потенциал, превышающий амплитуду пилообразного напряжения, поступающего на инвертирующие входы обоих компараторов (вывод 5) с выхода генератора пилообразного напряжения DA6. Амплитуда пилооб- разного напряжения, как отмечалось ранее, составляет +3.2В. Поэтому, если построить схему защиты так, что на вывод 4 либо на вывод 3 ИМС TL494 в результате короткого замыкания в нагрузке будет подан статический потенциал, превышающий +3.2В, то произойдет блокировка работы ИМС. Однако необходимо отметить, что генератор пилообразного напряжения при этом не прекращает своей работы, т.е., несмотря на отсутствие выходных импульсов, пилообразное напряжение продолжает вырабатываться. Этот базовый принцип и положен в основу построения всех вариантов схем защитного отключения, применяемых в разных схемах ИБП на основе управляющей микросхемы TL494. При этом необходимо понимать, что термин "защитное отключение" подразумевает отключение (закрывание) именно силовых транзисторов инвертора, а не управляющей микросхемы, которая продолжает работать в специфическом режиме блокировки ее цифрового тракта до тех пор, пока на шине питания микросхемы Upom имеется напряжение, превышающее уровень +7В. Датчиком для типовой схемы защитного отключения обычно является диодно-резистивньй либо резистивный делитель, подключаемый к шинам выходных напряжений ИБП. Такой делитель "контролирует" уровень напряжения на этих шинах. При КЗ в нагрузке какой-либо из контролируемых шин изменяется распределение потенциалов в узлах такого делителя-датчика, что и является сигналом на срабатывание для схемы защитного отключения. Механизм ограничения максимальной длительности управляющего импульса имеет другую структуру. Из функциональной схемы микросхемы TL494 (рис.12) видно, что напряжение на не-инвертирующем входе ШИМ-компаратора DA2 определяется наибольшим из выходных напряжений двух усилителей ошибки DA3, DA4. Для того чтобы выходные напряжения усилителей DA3, DA4 не влияли бы друг на друга, выходы этих усилителей подключены к неинверти-рующему входу ШИМ-компаратора DA2 через развязывающие диоды, расположенные внутри микросхемы. Основная идея, заложенная в построение механизма ограничения, состоит в том, что усилитель DA4 включается так; чтобы изменение его выходного напряжения при растущей ширине управляющих импульсов, было бы противоположным изменению выходного напряжения усилителя DA3. Рассмотрим динамику процесса ограничения. Пусть в нагрузке какого-либо из сильноточных каналов ИБП возник режим повышенного токопот-ребления (начальная стадия КЗ). Выходное напряжение в канале +5В уменьшается. Это уменьшение через цепь обратной связи передается на неинвертирующий вход усилителя ошибки DA3 (вывод 1 микросхемы). Выходное напряжение DA3, а значит, и напряжение на неинверти-рующем входе ШИМ-компараторе DA2 начинает уменьшаться. Благодаря этому ширина выходных управляющих импульсов микросхемы возрастает, т.е. управляющая микросхема стремится под- держать выходные напряжения ИБП на прежнем уровне за счет увеличения времени открытого состояния силовых транзисторов. На один из входов усилителя ошибки DA4 подается сигнал обратной связи, уровень которого пропорционален ширине управляющих импульсов ( времени открытого состояния силовых транзисторов). Уровень этого сигнала в рассматриваемой ситуации будет возрастать. При этом DA4 включается так, что выходное напряжение его с ростом уровня сигнала обратной связи также растет. В результате имеют место два противоположно направленных процесса. Выходное напряжение усилителя ошибки DA3 уменьшается (как результат уменьшения выходных напряжений ИБП), а выходное напряжение усилителя ошибки DA4 растет (как результат увеличения ширины управляющих импульсов). Пока выходное напряжение усилителя DA3 превышает выходное напряжение усилителя DA4, оно является превалирующим и определяет уровень напряжения на неинвертирующем входе ШИМ-компаратора DA2, а значит, и ширину выходных импульсов, которая растет со скоростью, равной скорости уменьшения выходного напряжения усилителя DA3. Однако наступает момент, когда убывающее выходное напряжение усилителя DA3 сравнивается с растущим выходным напряжением усилителя DA4. После этого выходное напряжение усилителя DA3 становится меньше, чем выходное напряжение усилителя DA4 и перестает влиять на ширину выходных импульсов микросхемы. Другими словами, в этот момент происходит "передача" управляющих функций от усилителя DA3 к усилителю DA4. Ширина выходных импульсов определяется теперь только выходным напряжением усилителя DA4, которое не зависит от уровня выходных напряжений ИБП и сигнала обратной связи на выводе 1 микросхемы. Поэтому увеличение ширины выходных импульсов прекращается. Параметры элементов схемы рассчитываются таким образом, чтобы ограничение происходило на безопасном для транзисторов инвертора уровне. При этом скорость, с которой система переходит в режим ограничения, а также уровень этого ограничения, зависят от наличия и глубины обратных связей, которые могут организовываться с помощью внешних RC-цепочек в различной комбинации, охватывающих усилитель ошибки DA4. Далее микросхема переходит в специфический режим работы называемый режимом ограничения. Этот режим характеризуется тем, что ширина управляющих импульсов на выходах микросхемы неизменна и не зависит от уровня выходных напряжений ИБП. Другими словами, механизм ШИМ в режиме ограничения отключается (не действует). Если КЗ в нагрузке самоустранилось по истечении некоторого времени, то накопительные конденсаторы вторичной стороны быстро заряжаются. Поэтому сигнал обратной связи, поступающий на неинвертирующий вход усилителя DA3, начинает возрастать. Следовательно, начинает возрастать и выходное напряжение DA3. Когда это напряжение достигнет уровня выходного напряжения усилителя DA4, то вновь произойдет передача управления и управляющие функции перейдут от усилителя DA4 к усилителю DA3. Если КЗ в нагрузке не самоустранилось, то поскольку имеет место режим ограничения, микросхема не в состоянии поддерживать напряжения на выходных шинах ИБП. Поэтому выходные напряжения ИБП быстро уменьшаются, что приводит в большинстве практических схем ИБП к срабатыванию механизма защитного отключения. Защитное отключение, как было показано выше, имеет своим результатом прекращение протекания тока через силовые транзисторы и первичную обмотку импульсного трансформатора. Поэтому сигнал от токового датчика, поступающий на усилитель ошибки DA4, становится равным 0. Схема ИБП приходит в исходное состояние. Поэтому срабатывает схема пуска и ИБП попытается вновь выйти в номинальный режим. Если за это время КЗ в нагрузке самоустранилось, то выход на режим ничем не будет отличаться от первоначального запуска при включении ИБП в сеть. Если же КЗ не самоустранилось, то процессы повторятся, и ИБП перейдет в специфический аварийный "икающий" режим, который представляет собой периодически повторяющийся процесс защитного отключения. В качестве датчика ширины управляющих импульсов могут использоваться разные элементы. Информацию о ширине управляющих импульсов можно получить как с первичной, так и со вторичной стороны ИБП. Поэтому традиционными являются два основных способа, которые позволяют получить желаемый эффект контроля при минимальных затратах и простоте схемотехнической реализации. Первый из этих способов заключается в том, что управляющие импульсы снимаются либо со средней точки первичной обмотки управляющего трансформатора (DT), либо со специальной дополнительной обмотки этого трансформатора, которые находятся на вторичной стороне ИБП. Далее из этой импульсной последовательности выделяется постоянная составляющая. Уровень этой составляющей и несет в себе информацию о ширине управляющих импульсов. Способ получения информации о ширине управляющих импульсов с первичной стороны ИБП заключается в том, что в цепь протекания тока первичной обмотки силового импульсного трансформатора последовательно включается первичная (токовая) обмотка трансформатора тока. Применение а качестве датчика такого элемента как трансформатор объясняется необходимостью гальванической развязки вторичной стороны ИБП от первичной. Ток через первичную обмотку силового импульсного трансформатора имеет импульсную форму, причем ширина токовых импульсов определяется временем открытого состояния силовых транзисторов инвертора, т.е. шириной управляющих импульсов на базах этих транзисторов. Поэтому напряжение на нагрузке вторичной обмотки трансформатора тока также будет импульсным, причем длительность этих импульсов будет равна длительности управляющих импульсов, вырабатываемых микросхемой. Далее, как и в первом случае, из этого импульсного напряжения выделяется постоянная составляющая (посредством выпрямления и фильтрации). Уровень постоянной составляющей несет в себе информацию о ширине управляющих импульсов. Контролируемый сигнал, уровень которого зависит от ширины управляющих импульсов, подается на один из двух входов усилителя ошибки DA4. На второй вход этого усилителя для сравнения подается эталонное напряжение, уровень которого выбирается для каждой конкретной схемы ИБП исходя из построения всей защитной схемы в целом. Этот уровень лежит в диапазоне от 0 (в этом случае опорный вход усилителя DA4 заземлен) до +5В (в этом случае на опорный вход усилителя DA4 подается напряжение Uref. Если опорный уровень выбирается внутри этого диапазона, то к шине Uref подключается резистивный делитель и опорное напряжение необходимого уровня снимается с него. В качестве опорного входа обычно выбирается неинвертируюший вход усилителя DA4 (вывод 16 микросхемы), а контролируемый сигнал подается на инвертирующий вход (вывод 15). Однако возможен и обратный вариант включения усилителя DA4. При этом основным правилом, которое необходимо соблюсти при построении схемы ограничения, является то, что с ростом ширины управляющих импульсов выходное напряжение усилителя DA4 должно расти. Практические схемы ИБП на основе управляющей микросхемы TL494 могут быть построены как с использованием обоих защитных механизмов, так и с использованием только одного из них. В схемах, использующих оба механизма, при повышенном токопотреблении в нагрузке сильноточных каналов сначала имеет место режим ограничения ширины управляющих импульсов, и лишь только затем, если КЗ продолжает развиваться, наступает защитное отключение. В схемах с использованием только механизма защитного отключения чрезмерная ширина управляющих импульсов сразу вызывает защитное отключение. Сигнал с датчика ширины управляющих импульсов в этих схемах подается на неин-вертирующий вход какого-либо из компараторов DA1, DA2. Т.к. механизм ограничения в этих схемах не используется, то усилитель ошибки DA4 становится не нужен. Поэтому его принудительно выставляют в состояние жесткого нуля по выходу с тем, чтобы его выходное напряжение не влияло бы на входное напряжение ШИМ-компа-ратора DA2 ни при каких условиях. Для этого на инвертирующий вход DA4 (вывод 15) сразу при включении ИВП подается опорное напряжение Uref с вывода 14, а неинвертирующий вход (вывод 16) заземляется. Отказ от использования механизма ограничения при построении комбинированной защиты принципиально возможен, т.к. в архитектуре самой управляющей микросхемы уже заложено ограничение максимальной ширины выходного импульса. Уровень этого ограничения определяется потенциалом на выводе 4 микросхемы в установившемся режиме, а также источником напряжения DA7 (0,1В), подключенным между выводом 4 и неинвертирующим входом компаратора DA1 (см. выше). Таким образом внешняя схема ограничения (если она имеется) дублирует внутреннюю схему, повышая надежность работы ИБП и уменьшая вероятность выхода из строя силовых транзисторов инвертора. Отдельно необходимо упомянуть о защите от выходного перенапряжения. Поскольку самым "страшным" по возможным последствиям является перенапряжение в канале выходного напряжения +5В, которым питаются логические интегральные схемы, то защита организуется, как правило, именно в этом канале. В схемах некоторых ИБП предусмотрена и защита от перенапряжения в канале +12В. Перенапряжение в слаботочных каналах выработки отрицательных напряжений не столь критично для работы компьютера. Поэтому в этих каналах такой защиты, как правило, нет. Датчиком схемы защиты от выходного перенапряжения обычно является пороговая схема, состоящая из стабилитрона с соответствующим пробивным напряжением и балластного резистора. Стабилитрон подключается к шине контролируемого напряжения. При превышении этим напряжением заданного расчетного уровня стабилитрон пробивается, и на балластном резисторе появляется потенциал как результат протекания по нему тока стабилитрона. Появление этого потенциала используется как сигнал на срабатывание для схемы защитного отключения. Подводя итог описанию отдельных компонентов, входящих в состав комбинированной защиты, необходимо отметить, что наличие всех перечисленных защитных схем не является обязательным. Некоторые из них могут отсутствовать. Приведем условную классификацию компонентов комбинированной защиты. Схемы контроля ширины управляющих импульсов можно разделить на: •схемы, использующие механизм ограничения (ограничивающие схемы контроля); •схемы, использующие механизм защитного отключения (отключающие схемы контроля). Схемы защиты от короткого замыкания в нагрузке можно разделить на: •полные, в которых контроль осуществляется за уровнями всех четырех выходных напряжений; •неполные, в которых контроль осуществляется только за уровнями отрицательных выходных напряжений -5В и -12В. Схемы контроля выходного перенапряжения также можно разделить на: •полные, контролирующие уровень напряжений на шинах +5В и +12В; •неполные, контролирующие уровень напряжения только на одной из этих шин. Рассмотрим конкретные примеры. Пример 1. Комбинированная защита ИБП GT-150W (рис. 40) включает в себя: •ограничивающую схему контроля ширины управляющих импульсов; •неполную схему защиты от КЗ в нагрузке. Схема контроля ширины управляющих импульсов работает следующим образом. На инвертирующий вход усилителя ошибки DA4 (вывод 15) 0 ... 9 10 11 12 13 14 15 ... 30
|