8(495)909-90-01
8(964)644-46-00
pro@sio.su
Главная
Системы видеонаблюдения
Охранная сигнализация
Пожарная сигнализация
Система пожаротушения
Система контроля удаленного доступа
Оповещение и эвакуация
Контроль периметра
Система домофонии
Парковочные системы
Проектирование слаботочных сетей
Аварийный
контроль
Раздел: Документация

0 ... 12 13 14 15 16 17 18 ... 30

Пример 6.

Комбинированная защита ИБП SPS-200 (рис. 45) включает в себя:

•ограничивающую схему контроля ширины управляющих импульсов;

•полную схему защиты от КЗ в нагрузке слаботочных каналов;

•неполную схему контроля перенапряжения (только на шине +12В).

Ограничивающая схема контроля ширины управляющих импульсов в данной схеме имеет своим датчиком трансформатор тока СТ, т.е. информация о ширине управляющих импульсов снимается с первичной стороны ИБП. Резистор R27 является нагрузкой вторичной: обмотки СТ. На нем выделяется знакопеременное импульсное напряжение прямоугольной формы, обусловленное протеканием пилообразных знакопеременных токовых импульсов через первичную обмотку СТ. Диоды D14, D15 образуют двухполупериодную схему выпрямления со средней точкой. Выпрямленное напряжение сглаживается конденсатором С18. Резистор R26 - гасящий амплитуду переменного напряжения. Уровень напряжения на С18 пропорционален ширине (длительности) токовых импульсов через первичную обмотку СТ, а значит через первичную обмотку силового импульсного трансформатора и силовые ключи Q1, Q2 инвертора. Длительность этих импульсов определяется шириной (длительностью) управляющих импульсов на базах силовых ключей. Поэтому уровень выпрямленного напряжения на конденсаторе С18 будет, в конечном итоге, определяться шириной управляющих импульсов. При этом диоды D14, D15 включены так, что на конденсаторе С18 образуется отрицательное относительно "корпуса" напряжение. К инвертирующему входу усилителя ошибки DA4 (вывод 15) подключен резистивный делитель R30, R28, R31. Потенциалы в узлах А и В этого делителя определяются уровнем напряжения на конденсаторе С18 (шириной управляю-

щих импульсов), а также уровнем напряжения на шине +5В, Поясним это подробнее. Токи через резисторы этого делителя протекают по цепям: шина +5В - R30 - R28 - R31 - "корпус", (+)С18 -"корпус" -R31 - (-)С18.

Если внимательно проследить эти цепи, то можно увидеть, что через резистор R31 делителя протекают два встречно направленных тока. Преобладание того или иного из них зависит от соотношения уровней напряжения на конденсаторе С18 и шине +5В. Номиналы резисторов делителя выбраны такими, что пока ширина управляющих импульсов не выходит за допустимый предел, определяемый верхней границей диапазона стабилизации, преобладающим является ток, протекающий с шины +5В. Поэтому на резисторе R31 (в точке А делителя) и конденсаторе С18 присутствует небольшой положительный потенциал (доли вольта). Потенциал точки В (вывод 15 управляющей микросхемы) также положителен. Поэтому выходное напряжение усилителя ошибки DA4 равно ОВ и не влияет на работу ШИМ компаратора DA2 и всей микросхемы в целом. При повышенном токопотреблении в нагрузке какого-либо из сильноточных каналов, когда ширина управляющих импульсов начинает возрастать, происходит увеличение уровня отрицательного напряжения на конденсаторе С18. Благодаря этому ток разряда С18, протекающий через R31, начинает преобладать над током с шины +5В через тот же резистор. Другими словами, потенциалы точек А и В делителя начинают уменьшаться. Когда потенциал точки В станет отрицательным относительно "корпуса", появится выходное напряжение усилителя DA4, которое будет очень быстро нарастать (усилитель DA4 не охвачен ООС). С другой стороны, в результате растущего токопотреб-ления в процессе развития КЗ уровень напряжения на шине +5В несколько уменьшается. Это также способствует снижению потенциалов точек А и В делителя, а также уменьшению выходного


напряжения усилителя ошибки DA3. В момент, когда выходные напряжения усилителей DA3 и DA4 выравниваются, происходит передача управляющих функций от усилителя DA3 к усилителю DA4, и наступает ограничение: дальнейшее развитие КЗ в нагрузке не ведет к увеличению ширины управляющих импульсов.

Инвертирующий вход усилителя DA4 (вывод 15) подключен, помимо всего прочего, к шине Uref через высокоомный резистор R29 (100 кОм). Это делается из тех соображений, что в первый момент после включения ИБП, когда выходные напряжения еще отсутствуют, на обоих входах усилителя DA4 при отсутствии резистора R29 оказался бы нулевой потенциал. Состояние выхода DA4, который включен фактически как компаратор (отсутствие ООС), становилось бы неопределенным, т.е. была бы высока вероятность появления на выходе DA4 высокого уровня напряжения. Тогда работа ШИМ-компаратора DA2 и всей микросхемы в целом была бы заблокирована сразу же при включении ИБП в сеть. Чтобы исключить такую возможность, между выводом 15 и шиной Uref включается высокоомный R29. Поэтому при включении ИВП напряжение Uref, которое появляется раньше, чем выходные напряжения, прикладывается к делителю R29, R28, R31, и т.к. номинал R29 намного превосходит номиналы R28, R31, на выводе 15 управляющей микросхемы оказывается небольшой положительный потенциал (доли вольта). Это означает, что потенциал инвертирующего входа DA4 становится выше потенциала неинвертирующего входа, и усилитель DA4 принудительно выставляется в состояние 0В на выходе сразу же при включении. Это дает возможность схеме ИБП выйти в номинальный режим через процесс плавного запуска. В дальнейшем, когда на выходных шинах появятся напряжения номинального уровня, распределение потенциалов в точках А и В будет определяться уровнями напряжений на шине +5В и конденсаторе С18, а шина Uref не будет оказывать влияния на это распределение благодаря высокоомности R29.

Все остальные схемы, входящие в состав этой комбинированной защиты, используют механизм защитного отключения. При этом воздействие на управляющую микросхему традиционно производится через вывод 4.

Потенциал вывода 4 в установившемся режиме (после завершения процесса плавного запуска) определяется делителем, в состав которого входят резисторы R39, R34, а также сопротивление участка коллектор-эмиттер транзистора Q4 и резистор R43. При этом, поскольку база транзисторов Q4 заземлена (т.е. имеет "жесткий" уровень потенциала 0В), то состояние Q4 (величина сопротивления его участка коллектор-эмиттер) будет определяться потенциалом его эмиттера.

Если этот потенциал будет нулевым или положительным, то Q4 будет закрыт. Если отрицательным - то Q4 будет находиться в линейном режиме, либо в режиме насыщения (в зависимости от уровня этого отрицательного потенциала).

Рассмотрим работу схемы защиты от КЗ в нагрузке слаботочных каналов. Датчиком этой схемы является традиционный диодно-резистивный

делитель D20, R47, который подключен между выходными шинами слаботочных каналов -5В, -12В. Потенциал в средней точке этого делителя является контролируемым сигналом. При нормальном токопотреблении в нагрузках слаботочных каналов уровень этого сигнала составляет около -5,8В. Это напряжение подается на делитель R44, R43. Поэтому в средней точке этого делителя, к которой подключен эмиттер транзистора Q4, присутствует отрицательный потенциал как результат протекания тока делителя по цепи: "корпус" - R43 - R44 - R47 - шина -12В.

Этот отрицательный потенциал открывает транзистор Q4. Поэтому в режиме нормального токопотребления потенциал коллектора транзистора Q4, а значит и вывода 4 управляющей микросхемы, близок к 0В. При КЗ в нагрузке канала -12В либо канала -5В потенциал в средней точке делителя-датчика D20, R47 возрастает до уровня 0В. Поэтому отрицательный потенциал на резисторе R43 и эмиттере транзистора Q4 исчезает. Транзистор Q4 закрывается. Напряжение на его коллекторе повышается почти до уровня питающего (Uref) и через диод развязки D19 прикладывается к выводу 4 управляющей микросхемы, что приводит к защитному отключению.

Схема защиты от КЗ в нагрузке сильноточных каналов реализована на двух компараторах 1 и 2 микросхемы IC2 типа LM339N. На неинвертиру-ющие входы обоих компараторов (выводы 7, 5) подается опорное напряжение с резистора R54 делителя R55, R54, подключенного к шине Uref. На инвертирующие входы компараторов подаются контролируемые уровни напряжений с резисторов R59 и R46 делителей-датчиков, подключенных к шинам +5В и +12В (делитель R58, R59 подключен к шине +5В; делитель R45, R46 - к шине +12В). Номиналы резисторов всех перечисленных делителей подобраны такими, что при нормальном токопотреблении в нагрузках сильноточных каналов, потенциалы на инвертирующих входах компараторов 1 и 2 (выводы 6 и 4) превышают опорный потенциал на их неинвертирующих входах (выводы 7, 5). Поэтому выходные транзисторы обоих компараторов открыты и выводы 1, 2 микросхемы IC2 подключены к "корпусу" через малое внутреннее сопротивление этих транзисторов.

При КЗ в нагрузке канала +5В управляющая микросхема сначала, как это было показано выше, переходит в режим ограничения. Затем, если КЗ продолжает развиваться, уровни выходных напряжений ИБП падают. Когда они уменьшаться настолько, что потенциал вывода 6 микросхемы IC2 станет меньше потенциала вывода 7, компаратор 1 "опрокинется". Выходной транзистор его закроется, и напряжение Uref окажется приложенным к делителю R56, D22, D21, R43. Благодаря этому на эмиттере транзистора Q4 окажется положительный потенциал, представляющий собой падение напряжения на резисторе R43 этого делителя. Транзистор Q4 закрывается, что приведет к защитному отключению.

При КЗ в нагрузке канала +12В ситуация будет аналогичной, но исполнительным элементом будет компаратор 2, а делителем-датчиком - делитель R45, R46.


Q5.Q8-2SA733

Q6,Q7,Q9-2SC945

D19-D26-1N4148

Рис. 46. Комбинированная защита ИБП SP-200W.

Неполная схема контроля выходного перенапряжения собрана на элементах ZD1, R43 и контролирует уровень напряжения на шине +12В. При превышении напряжением на этой шине пробивного напряжения стабилитрона ZD1, последний "пробивается" и потенциал на балластном резисторе R43 повышается как результат протекания по нему тока стабилитрона. Поэтому на эмиттере транзистора Q4 оказывается положительный потенциал, и он закрывается, что влечет за собой защитное отключение.

Как следует из всего сказанного выше, для того чтобы управляющая микросхема работала в режиме ШИМ, необходимо поддерживать транзистор Q4 в открытом состоянии в процессе работы. Для этого на его эмиттере должен присутствовать отрицательный относительно "корпуса" потенциал. Поскольку этот потенциал поступает на эмиттер Q4 с выходных шин слаботочных каналов, то становится ясно, что в первый момент после включения ИБП в сеть, когда выходные напряжения еще отсутствуют, потенциал на эмиттере Q4 будет равен ОВ. Однако питающее напряжение на его коллекторе (Uref) уже имеется, и поэтому, если не предпринять специальных схемных мер, это напряжение через диод D22 окажется приложенным к выводу 4 управляющей микросхемы и заблокирует ее работу сразу при включении ИБП. Такой схемной мерой, исключающей эту возможность, является транзистор Q3. Это специальный "пусковой" транзистор, который срабатывает только один раз при каждом включении ИБП в сеть. Работает он следующим образом.

Сразу после включения в сеть на шине Uep появляется выпрямленное напряжение сети, а затем, как результат срабатывания схемы пуска, на шине Upom появляется вспомогательное напряжение питания микросхемы. К этой шине через конденсатор С19 подключен базовый делитель R25, R24 транзистора Q3. Конденсатор С19 был до включения ИБП в сеть полностью разряжен. Поэтому при появлении напряжения на шине Upom все оно приложится к базовому делителю транзистора Q3, а через управляющий переход

транзистора будет протекать ток зарядки конденсатора С19 по цепи: шина Upom - С19 - R25 -б-э Q3 - "корпус".

Этим током транзистор Q3 открывается до насыщения и потенциал его коллектора, а значит и потенциал коллектора транзистора Q4 становится равным ОВ. Заряд конденсатора С19 будет происходить до тех пор, пока напряжение на нем не достигнет номинального уровня напряжения Upom (+26В). Когда это случится, базовый ток через транзистор Q3 перестанет протекать, и он закроется. За это время схема ИБП через процедуру плавного запуска надежно успевает выйти в номинальный режим. В процессе работы ИБП транзистор Q3 постоянно закрыт и не влияет на работу схемы.

Однако такое схемное решение предусматривает одно необходимое условие: перед каждым включением ИБП в сеть конденсатор С19 должен быть полностью разряжен, иначе транзистор Q3 не откроется, и высокое коллекторное напряжение транзистора Q4 заблокирует работу микросхемы. Для ускорения разрядки конденсатора С19 после выключения ИБП из сети в схеме предусмотрен диод D11. При этом конденсатор С19 разряжается через нагрузку шины Upom (внутренние цепи микросхемы и согласующий каскад) и диод D11. Диод D11 уменьшает общее сопротивление разрядной цепи, т.к. разрядный ток минует базовый делитель R24, R25 транзистора Q3. Поэтому сокращается время, требуемое для полной разрядки С19, что ускоряет готовность ИБП к последующему включению.

Пример 7.

Комбинированная защита ИБП SP-200W (рис. 46) включает в себя:

•ограничивающую схему контроля ширины управляющих импульсов;

•неполную схему защиты от КЗ в нагрузке (только для слаботочных каналов);

•неполную схему контроля выходного перенапряжения (только на шине +5В).



0 ... 12 13 14 15 16 17 18 ... 30