8(495)909-90-01
8(964)644-46-00
pro@sio.su
Главная
Системы видеонаблюдения
Охранная сигнализация
Пожарная сигнализация
Система пожаротушения
Система контроля удаленного доступа
Оповещение и эвакуация
Контроль периметра
Система домофонии
Парковочные системы
Проектирование слаботочных сетей
Аварийный
контроль
Раздел: Документация

0 ... 13 14 15 16 17 18 19 ... 30

Эта схема, являясь одной из наиболее сложных, совмещает в себе и нетрадиционный подход к использованию функциональных узлов управляющей микросхемы TL494.

Ограничивающая схема контроля ширины управляющих импульсов имеет своим исполнительным элементом усилитель ошибки DA4. На неин-вертирующий вход этого усилителя подан "жесткий" потенциал ОВ (вывод 16 микросхемы соединен с "корпусом"). Потенциал инвертирующего входа усилителя DA4 зависит от соотношения напряжении на шине +12В и конденсаторе С18. Поясним это подробнее.

На конденсаторе С18 выделяется напряжение отрицательной полярности, полученное в результате выпрямления переменного напряжения со вторичной обмотки трансформатора тока СТ. Диоды D18, D19 образуют двухполупериодную схему выпрямления со средней точкой. Уровень отрицательного напряжения на конденсаторе С18 пропорционален ширине управляющих импульсов. К шине выходного напряжения +12В подключен резистивный делитель R27, R24, R25, R26. Благодаря тому что конденсатор С18 подключен к точке D этого делителя, через резистор R26 протекают два встречно направленных тока по цепям: шина + 12 В - R27 - R24 - R25 - R26 -"корпус" - (+)С18 - "корпус" - R26 - (-)С18.

Номиналы резисторов делителя подобраны такими, что пока токопотребление сильноточных каналов (а значит, и ширина управляющих импульсов) находится в диапазоне стабилизации, преобладающим является ток, протекающий через резистор R26 с шины +12В. Поэтому в точках С и D делителя в нормальном режиме работы присутствуют положительные потенциалы. Выходное напряжение усилителя DA4 равно ОВ, и он не влияет на работу микросхемы. В случае значительного возрастания ширины управляющих импульсов с выходом за диапазон стабилизации выпрямленное отрицательное напряжение на конденсаторе С18 начинает увеличиваться (по абсолютной величине). Потенциалы всех узлов делителя R27, R24, R25, R26 начинают уменьшаться. Как только потенциал в точке С этого делителя станет равен ОВ, появится выходное напряжение усилителя DA4. Попутно отметим, что преобладающим током через резистор R26 делителя становится ток разрядки конденсатора С18. Поэтому в точке D делителя потенциал будет отрицательным. При дальнейшем росте ширины управляющих импульсов выходное напряжение усилителя DA4 начинает расти, а выходное напряжение усилителя DA3 несколько уменьшается. Когда эти напряжения сравниваются, то управление ШИМ-компаратором DA2 передается от усилителя DA3 к усилителю DA4, и микросхема переходит в режим ограничения.

Построение схемы зашиты от КЗ в нагрузке слаботочных каналов в данной схеме является оригинальным и заслуживает особого внимания как встречающееся достаточно редко. Механизм срабатывания защиты остается тем же, что и в предыдущих схемах, однако в качестве исполнительного элемента здесь используется не компаратор "мертвой" зоны DA1, а ШИМ-компаратор

DA2. Компаратор DA1 в этой схеме выполняет лишь функцию плавного запуска совместно с формирующей цепочкой R14, R15, С8. Принцип ее действия рассмотрен в разделе, посвященном проблеме плавного запуска.

Датчиком, контролирующим уровни напряжений на шинах слаботочных каналов -5В, -12В, является делитель D23, R32. При этом в нормальном режиме работы потенциал в средней точке этого делителя составляет -5,8В, т.к. через делитель протекает ток по цепи: шина -5В - D23 - R32 -шина -12В.

Потенциал средней точки этого делителя всегда будет ниже потенциала шины -5В на величину прямого падения напряжения на диоде D23. Контролируемый сигнал со средней точки делителя подается на вход трехкаскадного УПТ (связь между всеми каскадами гальваническая).

Первый каскад выполнен на транзисторе Q6, который включен по схеме с общей базой. Коллекторной нагрузкой Q6 является резистор R30, последовательно с которым включен диод D22. Контролируемый сигнал подается на эмиттер транзистора Q6 через резистор R31. Усиленный сигнал снимается с коллектора транзистора Q6 на базу транзистора Q5 второго каскада. Диод D22 включается для компенсации температурного дрейфа параметров транзистора Q5. Поясним это подробнее.

При увеличении температуры ток через управляющий переход транзистора Q5 возрастает. Это приводит к дополнительному открыванию Q5, которое не связано с изменением контролируемого сигнала в средней точке делителя-датчика D23, R32, а следовательно, неправильной работе всей схемы в целом. Диод D22, обладающий такой же температурной зависимостью вольтампер-ной характеристики, как и управляющий переход транзистора Q5, включается параллельно этому переходу и оказывает компенсирующее воздействие на ток через переход. При увеличении температуры динамическое сопротивление диода D22 уменьшится, поэтому уменьшится и падение напряжения на нем. Ток же через диод останется практически неизменным, т.к. определяется состоянием (степенью приоткрывания) транзистора Q6. Поэтому суммарное падение напряжения на цепочке R30, D22 станет меньше. Поскольку это уменьшившееся падение напряжения прикладывается к цепочке, состоящей из резистора R28 и управляющего перехода транзистора Q5, то ток через эту цепочку останется неизменным, несмотря на уменьшившееся динамическое сопротивление эмиттерного перехода транзистора Q5.

Питание первого каскада УПТ осуществляется с шины выходного напряжения +5В.

Второй каскад УПТ собран на транзисторе Q5, который включен по схеме с общим эмиттером. Резистор R28 в эмиттерной цепи - токозадаю-щий. Коллекторной нагрузкой транзистора Q5 является резистор R29. Питание второго каскада УПТ также осуществляется с шины +5В. Усиленный сигнал снимается с резистора R29 и подается на базовый для транзистора Q7 делитель R33, R34 через диод R21.

Третий каскад УПТ собран на транзисторе Q7,


который включен по схеме с общим эмиттером. Коллекторной нагрузкой Q7 является резистор R35. Питание каскада осуществляется с шины вспомогательного напряжения питания управляющей микросхемы Upom. Базовый делитель транзистора Q7 состоит из резисторов R27, R33, R34 и подключен к шине +12В. Усиленный сигнал снимается с коллекторной нагрузки Q7 и подается на пороговую схему, собранную на элементах С19, ZD2. Сигнал с выхода пороговой схемы управляет состоянием бистабильной схемы на транзисторах Q8, Q9, т.к. подается на вход этой схемы (на базу транзистора Q9). Транзистор Q8 бистабильной схемы запитывается по эмиттеру напряжением Uref. Бистабильная схема, в свою очередь, управляет работой управляющей микросхемы IC1, т.к. выход ее (коллектор транзистора Q8) через диод D24 подключен к выводу 3 управляющей микросхемы (другими словами, к неин-вертирующему входу ШИМ-компаратора DA2). Проследим динамику работы этой схемы.

В режиме нормального токопотребления в нагрузках слаботочных каналов потенциал в средней точке делителя-датчика D23, R32 составляет -5,8В. Поэтому транзистор Q6 открыт, а значит открыт и транзистор Q5. Потенциал на коллекторе транзистора Q5 максимален и за вычетом падения напряжения на низкоомном R28 почти равен питающему напряжению +5В. Поэтому диод D21 максимально подзакрыт, и потенциал его анода максимален. Другими словами, цепочка D21, R29 оказывает минимальное шунтирующее воздействие на базовый для транзистора Q7 делитель R33, R34. Поэтому транзистор Q7 максимально приоткрыт, и напряжение на его коллекторе имеет некоторое минимальное значение, не превышающее пробивное напряжение стабилитрона ZD2 (12В). Поэтому стабилитрон заперт, и закрыты оба транзистора Q8, Q9 бистабильной схемы. Напряжение на аноде развязывающего диода D24 равно 0В. Поэтому диод D24 заперт, т.к. на его катоде присутствует положительное выходное напряжение усилителя ошибки DA3. Таким образом вся защитная схема не влияет на работу управляющей микросхемы.

При КЗ в нагрузке канала -12В диод D23 делителя-датчика запирается, т.к. потенциал его катода (0В) становится выше потенциала анода (-5В). Поэтому нулевым смещением эмиттерного перехода закрывается транзистор Q6 первого каскада УПТ. Закрывание транзистора Q6 влечет за собой закрывание транзистора Q5 и, следовательно, уменьшение напряжения на его коллекторе. Поэтому открывается в максимальной степени диод D21 и цепочка D21, R29 начинает оказывать максимальное шунтирующее воздействие на базовый для транзистора Q7 делитель R33, R34. Поэтому транзистор Q7 подзакрывается. Напряжение на его коллекторе возрастает. Когда это напряжение превысит пробивное напряжение стабилитрона ZD2, последний пробивается и через него в базу транзистора Q9 начинает протекать ток по цепи: шина Upom - R35 - ZD2 - D25 -б-э Q9 - "корпус".

Поэтому транзистор Q9 приоткрывается, что влечет за собой лавинообразный процесс взаим-

ного открывания обоих транзисторов Q9, Q8 бистабильной схемы (благодаря наличию ПОС). Транзисторы Q8, Q9 почти мгновенно достигают состояния насыщения, и напряжение Uref оказывается приложенным к выводу 3 управляющей микросхемы через малое внутреннее сопротивление открытого Q8 и диод D24. Таким образом на неинвертирующем входе ШИМ-компаратора DA2 оказывается высокий уровень напряжения (около +4В), который превышает амплитуду пилообразного напряжения, подаваемого на инвертирующий вход этого компаратора с выхода генератора DA6. Поэтому компаратор DA2 перестает переключаться. На выходе его появляется постоянная логическая "1", которая повторяясь элементом DD1, приводит к останову работы всего цифрового тракта микросхемы. Другими словами, происходит защитное отключение. При этом ШИМ-компаратор DA2 в аварийной ситуации ведет себя точно так же, как и компаратор "мертвой" зоны DA1 в ранее рассмотренных схемах, чем и обусловлена возможность его использования в качестве исполнительного элемента защиты.

При КЗ в нагрузке канала -5В диод D23 делителя-датчика будет открыт, однако потенциал его катода будет составлять всего около -0,8В. Поэтому транзистор Q6 первого каскада УПТ будет фактически закрыт, и механизм срабатывания защиты будет тем же самым.

Конденсатор С19 выполняет в схеме демпфирующую функцию и предотвращает ложное срабатывание защиты при кратковременных возможных "выбросах" напряжения на шине Upom, а также при кратковременных возможных "провалах" напряжения на шинах -12 и -5В.

Резисторы R38, R39 и R37, R36 образуют базовые делители для транзисторов Q8 и Q9 соответственно. Диоды D21, D25, D24 - развязывающие.

В схему рисунка входит также и схема защиты от выходного перенапряжения на шине +5В. Она собрана на элементах ZD1, R54, D26, R56, С20. Выход этой схемы так же.как и выход пороговой схемы токовой защиты, подключен ко входу бистабильной схемы (к базе транзистора Q9). Стабилитрон ZD1 имеет пробивное напряжение 5,1В. Поэтому пока напряжение на шине +5В не превышает этого значения, стабилитрон ZD1 заперт. Поэтому закрыты оба транзистора бистабильной схемы. При возникновении перенапряжения на шине +5В стабилитрон ZD1 "пробивается", и через него протекает ток по цепи: шина +5В - ZD1 -R54 - "корпус".

Этот ток вызывает появление падения напряжения на балластном для ZD1 резисторе R54. Падение напряжения с резистора R54 прикладывается к управляющему переходу транзистора Q9 бистабилыюй схемы через диод D26 и резистор R56. Поэтому в базу Q9 начинает протекать ток, приоткрывающий его. Далее развивается лавинообразный процесс взаимного открывания транзисторов Q9, Q8, что приводит к появлению высокого уровня напряжения на неинвертирующем входе ШИМ-компаратора DA2, а значит, к защитному отключению.

Конденсатор С20 предназначен для подавления кратковременных импульсных помех на шине


+5В, и т.о. предотвращает ложное срабатывание защиты, т.е. выполняет демпфирующую функцию, как и конденсатор С19.

Как следует из приведенных примеров, схемотехническая реализация комбинированных защит весьма разнообразна. Большим разнообразием отличается и применяемая элементная база (транзисторы, тиристоры, микросхемы, опорные диоды и т.д.). Авторы не претендуют на абсолютную полноту возможных схемотехнических решений, которые приведены в этой книге. На практике могут встречаться и другие решения, которые, однако, реализуют те же самые идеи. Поэтому при анализе каждой конкретной схемы ИБП в части построения комбинированной защиты, можно, опираясь на приведенную в этом разделе классификацию, выяснить назначение тех или иных элементов этой схемы и всей схемы в целом.

Завершая раздел, посвященный анализу комбинированных защит, необходимо отметить, что построение каждой конкретной защитной схемы вплотную увязано с построением других функциональных узлов ИБП, таких как схема возбуждения, схема стабилизации, схема получения вы-

ходных напряжений и т.д. Другими словами, все функциональные узлы конкретной схемы ИБП работают согласованно и взаимосвязаны друг с другом. Поэтому для уяснения всей картины в целом, необходимо не только представлять себе назначение и работу отдельных функциональных узлов, но и их взаимосвязь и взаимное влияние. В связи с этим необходимо четко представлять себе последовательность и физику процессов, происходящих в ИБП:

•при включении его в питающую сеть;

•при выключении его из питающей сети;

•при возникновении аварийной ситуации, обусловленной КЗ в нагрузке какого-либо из выходных каналов, либо перенапряжением на выходе какого-либо из этих каналов;

•при возмущениях, приводящих к отклонению выходных напряжений ИБП от номинальных значений в пределах диапазона стабилизации.

Все эти последовательности называются алгоритмами. Рассмотрению алгоритма включения ИБП в питающую сеть посвящен следующий раздел этой книги.

СХЕМА "МЕДЛЕННОГО ПУСКА"

При включении ИБП конденсаторы выходных фильтров еще не заряжены. Поэтому транзисторный преобразователь работает фактически на короткозамкнутую нагрузку. При этом мгновенная мощность на коллекторных переходах мощных транзисторов может превышать в несколько раз среднюю мощность, потребляемую от сети. Это происходит из-за того, что действие обратной связи при запуске приводит к превышению тока транзисторов по сравнению с допустимым. Поэтому необходимы меры обеспечения "плавного" ("мягкого" или "медленного") пуска преобразователя. В рассматриваемых ИБП это достигается путем плавного увеличения длительности включенного состояния мощных транзисторов вне зависимости от сигнала обратной связи, который "требует" от схемы управления максимально возможной длительности управляющего импульса сразу при включении ИБП. Т.е. коэффициент заполнения импульсного напряжения в момент включения принудительно делается очень малым и затем плавно увеличивается до необходимого.

"Медленный пуск" позволяет управляющей микросхеме IC1 постепенно увеличивать длительность импульсов на выводах 8 и 11 до выхода БП в номинальный режим.

Во всех ИБП на основе управляющей ИМС типа TL494CN схема "медленного пуска" реализуется при помощи RC-цепочки, подключенной к неин-вертирующему входу компаратора "мертвой зоны" DA1 (вывод 4 микросхемы).

Рассмотрим работу схемы пуска на примере ИБП LPS-02-150XT (рис.41).

"Медленный пуск" осуществляется в данной схеме благодаря RC-цепочке С19, R20, подключенной к выводу 4 управляющей микросхемы IC1.

Прежде чем рассматривать работу схемы "медленного пуска" необходимо ввести понятие об алгоритме запуска ИБП. Под алгоритмом запуска подразумевается последовательность появления напряжений в схеме ИБП. В соответствии с физикой работы первоначально всегда появляется выпрямленное напряжение сети Uep. Затем, как результат срабатывания схемы пуска, появляется напряжение питания управляющей микросхемы Upom. Результатом подачи питания на микросхему является появление выходного напряжения внутреннего стабилизированного источника опорного напряжения Uref. Лишь только после этого появляются выходные напряжения блока. Последовательность появления этих напряжений не может быть нарушена, т.е. Uref, например, не может появиться раньше, чем Upom и т.д.

Примечание. Обращаем Ваше особое внимание на то, что процесс первоначального запуска ИБП и процесс "медленного пуска" - это разные процессы, протекающие последовательно во времени! При включении ИБП в сеть сначала происходит первоначальный запуск, а уже потом - "медленный пуск", облегчающий силовым транзисторам блока выход в номинальный режим.

Как уже отмечалось, конечной целью процесса "медленного пуска" является получение плавно нарастающих по ширине выходных управляющих импульсов на выводах 8 и 11. Ширина выходных импульсов определяется шириной импульсов на выходе логического элемента DD1 IC1 (см. рис.13). Протекание процесса плавного запуска ИБП во времени показано на рис. 47.

Пусть в момент времени t0 на управляющую микросхему IC1 подается напряжение питания Upom. В результате запускается генератор пилообразного напряжения DA6, и на выводе 14 появ-



0 ... 13 14 15 16 17 18 19 ... 30