Раздел: Документация
0 ... 33 34 35 36 37 38 39 ... 55
Предусмотрены также показатели качества поверхности реза:
5...12 13...30 31. „60 61...100
Эти показатели относятся к машинной кислородной резке низкоуглеродистой стали кислородом 1-го и 2-го сортов. Процесс резки вызывает изменение структуры, химического состава и механических свойств металла. При резке низкоуглеродистой стали тепловое влияние процесса на ее структуру незначительно. Наряду с участками перлита появляется неравновесная составляющая сорбита, что даже несколько улучшает механические свойства металла. При резке стали, имеющей повышенное содержание углерода* а также легирующие примеси, кроме сорбита, образуются троостит и даже мартенсит. При этом сильно повышатся твердость и хрупкость стали и ухудшается обрабатываемость кромок разреза. Возможно образова- ние холодных трещин. Изменение химического состава стали проявляется в образовании обезуглероженно-го слоя металла непосредственно на поверхности резания в результате выгорания углерода под воздействием струи режущего кислорода. Несколько глубже находится участок с большим содержанием углерода, чем у исходного металла. Затем по мере удаления от разреза содержание углерода уменьшается до исходного. Так же происходит выгорание легирующих элементов стали. Механические свойства низкоуглеродистой стали при резке почти не изменяются. Стали с повышенным содержанием углерода, марганца, хрома и молибдена закаливаются, становятся более твердыми и дают трещины в зоне резания. Нержавеющие хромистые и хромо-никелевые стали, чугуны, цветные металлы и их сплавы не поддаются обычной газокислородной резке, так как не удовлетворяют указанным выше условиям. Для этих металлов применяют кислородно-флюсовую резку, сущность которой заключается в следующем. В зону резания с помощью специальной аппаратуры непрерывно подается порошкообразный флюс, при сгорании которого выделяется дополнительная теплота и повышается температура места разреза. Кроме того, продукты сгорания флюса реагируют с тугоплавкими оксидами и дают жидкотекучие шлаки, легко вытекающие из места разреза. В качестве флюса используется мелкогранулированный железный порошок марки ПЖ5М (ГОСТ 9849— 74). При резке хромистых и хромо-никелевых сталей во флюс добавляют 25...50% окалины. При резке чугуна добавляют~30...35% доменного фер-рофосфора. При резке меди и ее сплавов применяют флюс, состоящий из смеси железного порошка с алюминиевым порошком (15...20%) и ферро-фосфором (10...15%). Резку производят установкой УРХС-5, разработанной ВНИИавто-генмашем и состоящей из флюсо-питателя и резака. Установка используется для ручной и машинной кислородно-флюсовой резки высоколегированных хромистых и хро-моникелевых сталей толщиной 10... 200 мм при скорости резания 230... 760 мм/мин. На 1 м разреза расходуется кислорода 0,20...2,75 м , ацетилена— 0,017...0,130 м3 и флюса — 0,20...1,3 кг. При кислородно-флюсовой резке некоторая часть теплоты подогревающего пламени уходит на нагревание флюса. Поэтому мощность пламени берется на 15...25% выше, чем при обычной газовой резке. Пламя должно быть нормальным или с некоторым избытком ацетилена. Расстояние от торца мундштука резака до поверхности разрезаемого металла устанавливается 15...25 мм. При малом расстоянии частицы флюса отражаются от поверхности металла и, попадая в сопло резака, вызывают хлопки и . обратные удары. Кроме того, наблюдается перегрев мундштука, приводящий к нарушению процесса резки. Угол наклона мундштука должен составлять О...Ю0 в сторону, обратную направлению резки. Хорошие результаты дает предварительный подогрев. Хромистые и хромо-никелевые стали требуют подогрева до 300...400°С, а сплавы меди — до 200...350° С. Скорость резки зависит от свойств металла и его толщины. Чугун толщиной 50 мм режут со скоростью 70...100 мм/мин. При этом на 1 м разреза расходуется 2...4 м3 кислорода, 0,16...0,25 м ацетилена и 3,5...6 кг флюса. Примерно такие же данные получают при резке сплавов меди. При резке хромистых и хромонике-левых сталей расход всех материалов снижается почти в 3 раза. РАЗДЕЛ III КОНТАКТНАЯ СВАРКА ГЛАВА 14 ТЕХНОЛОГИЯ КОНТАКТНОЙ СВАРКИ § 39. Сущность контактной сварки Контактной сваркой называется сварка с применением давления,при которой нагрев производится теплотой, выделяющейся при прохождении электрического тока через находящиеся в контакте соединяемые части. Количество теплоты (Дж), выделяющейся при прохождении электрического тока через находящиеся в контакте детали, может быть определено по формуле Q = I2Rt, где / — ток, A; R — сопротивление участка цепи в месте контакта деталей, Ом; t — продолжительность действия тока, с. Из формулы видно, что количество теплоты зависит от тока в сварочной цепи. Поэтому для быстрого нагрева свариваемых кромок применяют большие токи, достигающие нескольких десятков тысяч ампер. Так как электрическое сопротивление прохождению тока в месте контакта свариваемых деталей велико, то на этом очень малом участке выделяется большое количество теплоты, которое вызывает быстрый нагрев металла. С повышением температуры металла в зоне контакта его сопротивление возрастает, следовательно, еще более возрастает количество выделяющейся теплоты и ускоряется процесс нагрева металла. Таким образом, применение больших сварочных токов позволяет осуществить быстрый нагрев металла и выполнить сварку за десятые и даже сотые доли секунды. Режим контактной сварки характеризуется совместным действием основных параметров — тока и времени его протекания, силы сжатия и времени ее действия. По току и времени его протекания различают два режима сварки: жесткий и мягкий. Жесткий режим характеризуется большим током и малым временем процесса сварки. Такой режим применяется для сварки сталей, чувствительных к нагреву и склонных к образованию закалочных структур, а также легкоплавких цветных металлов и их сплавов. Мягкий режим характеризуется большей продолжительностью процесса и постепенным нагревом свариваемого металла. Таким режимом пользуются при сварке углеродистых сталей, обладающих низкой чувствительностью к тепловому воздействию. Машины для контактной сварки состоят из двух основных частей: электрической и механической. Электрическая часть машин состоит из трансформатора, переключателя ступеней (регулятора тока), регулятора времени, прерывателя тока и токо-подводящих проводов и устройств. Трансформатор применяется однофазный с секционированной первичной обмоткой, позволяющей с помощью переключателя ступеней изменять напряжение во вторичной обмотке. При первичном напряжении 220 или 380 В, а вторичном— 1...20 В сварочный ток достигает нескольких десятков килоампер. Вторичная обмотка трансформатора у машин малой мощности состоит из отдельных гибких медных полос, охлаждаемых воздухом, у машин средней и большой мощности — из пустотелых медных витков, охлаждаемых проточной водой. Механическая часть состоит из станины и механизмов, обеспечивающих точную фиксацию и необ- 0 ... 33 34 35 36 37 38 39 ... 55
|